

éclaire

Component 5

Markus Amann J.-P. Hettelingh Mike Holland Wilfried Winiwarter

ECLAIRE Final Meeting Edinburgh, Sep 1-4, 2015

IIASA, International Institute for Applied Systems Analysis

Overall objective of C5:

Make findings of ECLAIRE relevant for (today's) response strategies

WP18: Quantification of economic benefits of ecosystems Mike Holland / Rob Maas

- Different valuation methods (willingness-to-pay, restoration costs, quantifying co-benefits with bird&habitat directive) lead to a monetized biodiversity benefit for European Natura2000 areas of > €8 bn/yr
- However, these benefits are not significantly higher than mitigation costs (in contrast to B/C ratio for health)
- Do these values support additional NH₃-reduction?

WP19: Integration of climate change effects into impact assessment Jean-Paul Hettelingh / Max Posch

Habitat Suitability Index:

- Probability for appearance of species
- Function, i.a., of climate (temperature, water availability), S/N deposition, etc.
- GAINS uses S/N depositions to characterize probability of species appearance, for a given set of other factors
- Alternative S/N sets for climate change conditions

WP20: Implications of/for mitigation and adaptation strategies Wilfried Winiwarter / Markus Amann

- 1. Costs and benefits of improved protection of biodiversity against atmospheric deposition
- 2. How would climate change affect measures to achieve targets for biodiversity?
- 3. Scope for policy interventions to reduce ozone damage to vegetation

Costs for improving protection of biodiversity in Natura2000 areas

GAINS optimization for 2030:

 corresponding to scenarios discussed by COM/Council/ Parliament as of April 2015

Illustrative ECLAIRE scenario (relative to COM proposal):

- -0.6 eq/ha less average excess deposition (-4%)
- +193 km² more Natura2000 area protected (+0.12%)
- Mitigation costs +23 mio €/yr (+1%)
- Monetized benefits?

How much would it cost to compensate climate change impacts on biodiversity via (1) increased vulnerability to air pollution, (2) increased NH₃ emissions

	Central case, Current climate 2030		With biodiversity indicators under climate change ^{**)}			With higher NH ₃ emissions due to climate change ***)		
	HS indicator (eq/ha)	Costs *)	HS indicator (eq/ha)	Additional costs to return to central case		HS indicator (eq/ha)	Additional costs to return to central case	
CLE	26.0	0	30.9	+95	0.11%	26.7	+26	0.03%
COM proposal	14.6	2189	17.7	+889	1.03%	14.9	+236	0.27%
ECLAIRE scenario	14.0	2212	16.3	+1333	1.54%	14.4	+386	0.33%

*) million €/yr, on top of current legislation /% of CLE costs
**) for 2050 climate scenario (+1 degree relative to today)
***) ~4% higher total NH₃ emissions in EU-28

Could reduced air pollution compensate climate change impacts on biodiversity? At what costs?

Scope for further reducing O₃ damage to vegetation and health

Tentative conclusions

- ECLAIRE has developed an indicator and monetization for biodiversity losses.
- There is rather little scope for further improvements of the current HS biodiversity indicator value beyond what would result from the TSAP proposal (by 3-5%, even with MTFR).
- Climate change is expected to enhance stress on biodiversity via higher vulnerability and NH3 emissions. For 2030, compensation of increased vulnerability would increase pollution control costs by up to 60%; temperature-related increase of NH₃ has less impact.
- Current models suggest that O₃ fluxes have declined by 20% since 1990; there seems to be rather little scope for further reductions through European and even hemispheric measures beyond CLE. What about impacts?

